organic compounds

 $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.065$

 $0.40 \times 0.31 \times 0.07 \text{ mm}$

19216 measured reflections

4437 independent reflections

2266 reflections with I > 2s(I)

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 1-sec-butyl-2-(4-methoxyphenyl)-1H-benzimidazole-5-carboxylate

Natarajan Arumugam,^a Aisyah Saad Abdul Rahim,^a‡ Hasnah Osman,^b Madhukar Hemamalini^c and Hoong-Kun Fun^c*§

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 24 February 2010; accepted 1 March 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.066; wR factor = 0.150; data-to-parameter ratio = 18.9.

In the title molecule, $C_{21}H_{24}N_2O_3$, the dihedral angle between the benzene and imidazole rings is $66.33 (13)^\circ$. The imidazole ring is essentially planar, with a maximum deviation of 0.004 (2) Å. In the crystal structure, molecules are connected by weak $C-H \cdots O$ hydrogen bonds, forming chains along the b axis

Related literature

For the benzimidazole nucleus as a key building block for compounds showing biologically activity, see: Tanious et al. (2004). For the therapeutic properties of benzimidazole derivatives, see: Kohara et al. (1996); Mader et al. (2008). For 2substituted-phenylbenzimidazoles with biological activity, see: Coburn et al. (1987); Roth et al. (1997).

Experimental

Crystal data

$C_{21}H_{24}N_2O_3$	a = 10.5815 (3) Å
$M_r = 352.42$	b = 12.1079 (3) Å
Monoclinic, $P2_1/c$	c = 15.1050 (3) Å

[‡] Additional correspondence author, e-mail: aisyah@usm.my. § Thomson Reuters ResearcherID: A-3561-2009.

$\beta = 93.678 \ (2)^{\circ}$
V = 1931.26 (8) Å
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.968, T_{\max} = 0.994$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ 235 parameters $wR(F^2) = 0.150$ H-atom parameters constrained S = 1.04 $\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$ 4437 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C21-H21C\cdots O1^{i}$	0.96	2.47	3.389 (4)	161
Symmetry code: (i) $-x$	$y - \frac{1}{2}, -z + \frac{1}{2}.$			

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

NA, ASAR and HO are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry research under the USM Research University grant (1001/PFARMASI/ 815026). NA thanks USM for the award of postdoctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks USM for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2635).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coburn, R. A., Clark, M. T., Evans, R. T. & Genco, R. J. (1987). J. Med. Chem. 30, 205-208.
- Kohara, Y., Kubo, K., Imamiya, E., Wada, T., Inada, Y. & Naka, T. (1996). J. Med. Chem. 39, 5228-5235.
- Mader, M., de Dios, A., Shih, C. & Anderson, B. D. (2008). Bioorg. Med. Chem. Lett. 18, 179-183.
- Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tanious, F. A., Hamelberg, D., Bailly, C., Czarny, A., Boykin, D. W. & Wilson, W. D. (2004). J. Am. Chem. Soc. 126, 143-153.

supplementary materials

Acta Cryst. (2010). E66, 0845 [doi:10.1107/S1600536810007634]

Ethyl 1-sec-butyl-2-(4-methoxyphenyl)-1H-benzimidazole-5-carboxylate

N. Arumugam, A. S. Abdul Rahim, H. Osman, M. Hemamalini and H.-K. Fun

Comment

The benzimidazole nucleus is the key building block for a variety of compounds that play crucial roles in the function of a number of biologically important molecules (Tanious *et al.*, 2004). Benzimidazole derivatives have shown different therapeutic properties such as antihypertensive (Kohara *et al.*, 1996) and anti-inflammatory (Mader *et al.*, 2008) activities. 2-(substitutedphenyl)benzimidazoles with various types of biological activities, such as antibacterial (Coburn *et al.*, 1987) and antiviral (Roth *et al.*, 1997), have been reported. Due to their importance, the crystal structure determination of the title compound was carried out and the results are presented here.

In the title molecule (Fig. 1), the imidazole ring is essentially planar with a maximum deviation of 0.004 (2) Å for atom C13. The dihedral angle between the imidazole ring (N1/N2/C13/C7–C8) and the benzene ring (C1–C6) is 66.33 (13)°. In the crystal structure (Fig. 2), the molecules are connected by weak C21—H21C···O1 (Table 1) hydrogen bonds, forming one-dimensional chains along the *b* axis.

Experimental

Ethyl-3-amino-4-(*sec*-butylamino)benzoate (200 mg, 0.84 mmol) and the sodium metabisulfite adduct of 4-methoxy benzaldehyde (406 mg, 1.68 mmol) were dissolved in DMF. The reaction mixture was irradiated under microwave conditions at 403 K for 2 minutes. After completion of the reaction, the reaction mixture was diluted in EtOAc (20 ml) and washed with H₂O (20 ml). The organic layer was collected, dried over Na₂SO₄ and then evaporated *in vacuo* to yield the crude product. The product was recrystallized from hot EtOAc to afford the title compound as colorless crystals.

Refinement

All hydrogen atoms were positioned geometrically [C-H = 0.93-0.98 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Figures

Fig. 1. The title molecule, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2. A view of the crystal packing of the title compound, showing C–H…O interactions as dashed lines. H atoms not involved in the hydrogen bond interactions are omitted for clarity.

Ethyl 1-sec-butyl-2-(4-methoxyphenyl)-1H-benzimidazole-5-carboxylate

Crystal data	
$C_{21}H_{24}N_2O_3$	F(000) = 752
$M_r = 352.42$	$D_{\rm x} = 1.212 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1865 reflections
a = 10.5815 (3) Å	$\theta = 2.6 - 19.8^{\circ}$
b = 12.1079 (3) Å	$\mu=0.08~mm^{-1}$
c = 15.1050 (3) Å	T = 296 K
$\beta = 93.678 \ (2)^{\circ}$	Plate, colourless
V = 1931.26 (8) Å ³	$0.40\times0.31\times0.07~mm$
Z = 4	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	4437 independent reflections
Radiation source: fine-focus sealed tube	2266 reflections with $I > 2s(I)$
graphite	$R_{\rm int} = 0.065$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2009)	$h = -13 \rightarrow 13$
$T_{\min} = 0.968, T_{\max} = 0.994$	$k = -15 \rightarrow 15$
19216 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.150$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0461P)^2 + 0.4985P]$ where $P = (F_o^2 + 2F_c^2)/3$
4437 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
235 parameters	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$

0 restraints

 $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.50185 (18)	0.95365 (16)	0.17576 (12)	0.0728 (6)
02	0.34173 (18)	1.00924 (15)	0.08352 (13)	0.0735 (6)
03	-0.47540 (19)	0.38119 (16)	0.08035 (13)	0.0761 (6)
N1	0.07745 (19)	0.58199 (16)	0.20122 (13)	0.0503 (5)
N2	0.00579 (19)	0.70718 (16)	0.10000 (13)	0.0532 (5)
C1	-0.2515 (2)	0.5992 (2)	0.15122 (17)	0.0587 (7)
H1A	-0.2505	0.6692	0.1767	0.070*
C2	-0.3657 (3)	0.5442 (2)	0.13763 (16)	0.0594 (7)
H2A	-0.4402	0.5765	0.1543	0.071*
C3	-0.3678 (3)	0.4410 (2)	0.09909 (16)	0.0570 (7)
C4	-0.2565 (3)	0.3940 (2)	0.07547 (19)	0.0696 (8)
H4A	-0.2578	0.3243	0.0495	0.084*
C5	-0.1438 (3)	0.4490 (2)	0.08990 (18)	0.0651 (8)
H5A	-0.0693	0.4159	0.0739	0.078*
C6	-0.1391 (2)	0.5534 (2)	0.12809 (15)	0.0491 (6)
C7	-0.0199 (2)	0.6160 (2)	0.14217 (16)	0.0481 (6)
C8	0.1732 (2)	0.65916 (19)	0.19625 (15)	0.0478 (6)
С9	0.2938 (2)	0.6692 (2)	0.23777 (17)	0.0598 (7)
H9A	0.3260	0.6164	0.2779	0.072*
C10	0.3633 (2)	0.7602 (2)	0.21706 (17)	0.0563 (7)
H10A	0.4438	0.7693	0.2445	0.068*
C11	0.3174 (2)	0.8402 (2)	0.15602 (15)	0.0485 (6)
C12	0.1987 (2)	0.8284 (2)	0.11322 (16)	0.0509 (6)
H12A	0.1677	0.8803	0.0720	0.061*
C13	0.1265 (2)	0.73630 (19)	0.13359 (15)	0.0452 (6)
C14	0.3975 (3)	0.9378 (2)	0.14099 (17)	0.0548 (7)
C15	0.4123 (3)	1.1098 (2)	0.0663 (2)	0.0797 (9)
H15A	0.4977	1.0918	0.0515	0.096*
H15B	0.4170	1.1571	0.1183	0.096*
C16	0.3432 (3)	1.1663 (3)	-0.0091 (2)	0.0928 (10)
H16A	0.3872	1.2328	-0.0229	0.139*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H16B	0.2592	1.1843	0.0067	0.139*
H16C	0.3385	1.1184	-0.0598	0.139*
C17	0.0678 (3)	0.4949 (2)	0.26963 (17)	0.0600(7)
H17A	-0.0174	0.4634	0.2602	0.072*
C18	0.0755 (3)	0.5434 (3)	0.36209 (18)	0.0758 (9)
H18A	0.0617	0.4847	0.4041	0.091*
H18B	0.1605	0.5715	0.3751	0.091*
C19	-0.0167 (3)	0.6342 (3)	0.3763 (2)	0.0972 (11)
H19A	-0.0046	0.6609	0.4361	0.146*
H19B	-0.1015	0.6067	0.3662	0.146*
H19C	-0.0033	0.6934	0.3357	0.146*
C20	0.1589 (3)	0.4015 (2)	0.2570 (2)	0.0830 (10)
H20A	0.1475	0.3744	0.1973	0.124*
H20B	0.1432	0.3430	0.2977	0.124*
H20C	0.2442	0.4276	0.2678	0.124*
C21	-0.5922 (3)	0.4267 (3)	0.1060 (2)	0.0828 (10)
H21A	-0.6601	0.3767	0.0894	0.124*
H21B	-0.6072	0.4962	0.0766	0.124*
H21C	-0.5877	0.4376	0.1690	0.124*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0634 (13)	0.0789 (14)	0.0747 (13)	-0.0233 (11)	-0.0070 (11)	0.0058 (10)
02	0.0746 (13)	0.0553 (12)	0.0884 (14)	-0.0213 (10)	-0.0109 (11)	0.0173 (10)
O3	0.0636 (13)	0.0762 (14)	0.0884 (14)	-0.0216 (11)	0.0039 (10)	-0.0165 (11)
N1	0.0537 (13)	0.0410 (12)	0.0558 (12)	-0.0019 (10)	-0.0002 (10)	0.0107 (9)
N2	0.0560 (14)	0.0466 (12)	0.0557 (13)	-0.0065 (10)	-0.0052 (10)	0.0079 (10)
C1	0.0655 (18)	0.0428 (15)	0.0685 (18)	-0.0067 (14)	0.0085 (14)	-0.0055 (12)
C2	0.0556 (17)	0.0565 (17)	0.0668 (17)	-0.0023 (14)	0.0091 (13)	-0.0005 (14)
C3	0.0616 (18)	0.0545 (17)	0.0547 (15)	-0.0136 (15)	0.0015 (13)	-0.0006 (13)
C4	0.0677 (19)	0.0530 (17)	0.088 (2)	-0.0092 (16)	0.0052 (16)	-0.0216 (15)
C5	0.0599 (18)	0.0529 (17)	0.083 (2)	-0.0005 (15)	0.0062 (15)	-0.0119 (15)
C6	0.0534 (16)	0.0412 (14)	0.0524 (14)	-0.0027 (13)	0.0010 (12)	0.0048 (12)
C7	0.0520 (15)	0.0425 (14)	0.0498 (14)	-0.0003 (12)	0.0039 (12)	0.0028 (11)
C8	0.0496 (15)	0.0411 (14)	0.0527 (14)	-0.0007 (12)	0.0032 (12)	0.0026 (11)
С9	0.0554 (17)	0.0533 (17)	0.0699 (18)	0.0026 (14)	-0.0035 (14)	0.0114 (13)
C10	0.0494 (16)	0.0539 (17)	0.0643 (17)	-0.0004 (13)	-0.0050 (13)	0.0020 (13)
C11	0.0500 (15)	0.0440 (14)	0.0516 (14)	-0.0031 (12)	0.0050 (12)	-0.0023 (11)
C12	0.0575 (16)	0.0440 (15)	0.0506 (14)	-0.0013 (13)	-0.0005 (12)	0.0055 (11)
C13	0.0492 (15)	0.0399 (14)	0.0462 (14)	0.0016 (12)	0.0002 (11)	0.0005 (11)
C14	0.0575 (17)	0.0539 (17)	0.0531 (16)	-0.0077 (14)	0.0042 (14)	-0.0047 (13)
C15	0.092 (2)	0.0582 (19)	0.087 (2)	-0.0277 (17)	-0.0076 (18)	0.0144 (16)
C16	0.111 (3)	0.072 (2)	0.095 (2)	-0.022 (2)	0.003 (2)	0.0107 (19)
C17	0.0638 (17)	0.0486 (15)	0.0672 (18)	-0.0039 (14)	0.0018 (14)	0.0196 (13)
C18	0.081 (2)	0.083 (2)	0.0640 (19)	-0.0050 (18)	0.0050 (16)	0.0213 (16)
C19	0.108 (3)	0.110 (3)	0.074 (2)	0.020 (2)	0.0124 (19)	-0.008 (2)
C20	0.079 (2)	0.0545 (18)	0.116 (3)	0.0092 (17)	0.0115 (19)	0.0259 (17)

sup-5

supplementary materials

C21	0.063 (2)	0.107 (3)	0.078 (2)	-0.0206 (19)	0.0052 (16)	-0.0121 (19)
Geometric para	meters (Å, °)					
O1—C14		1 208 (3)	C10	—H10A	0.93	300
02-C14		1 335 (3)	C11-		1 38	33 (3)
02—C15		1 461 (3)	C11		1 48	31 (3)
02 - 010		1 363 (3)	C12		1 39)6 (3)
03—C21		1 429 (3)	C12	—H12A	0.93	300
N1-C7		1.381 (3)	C15		1.48	30 (4)
N1—C8		1.384 (3)	C15	-H15A	0.97	700
N1-C17		1.485 (3)	C15	—H15B	0.97	700
N2—C7		1.312 (3)	C16		0.96	500
N2—C13		1.389 (3)	C16	—H16B	0.96	500
C1—C6		1.377 (3)	C16	—H16C	0.96	500
C1—C2		1.384 (3)	C17-	C20	1.50)7 (4)
C1—H1A		0.9300	C17-		1.51	2 (4)
C2—C3		1.379 (4)	C17-	—H17A	0.98	300
C2—H2A		0.9300	C18-	—C19	1.49	95 (4)
C3—C4		1.375 (4)	C18-	—H18A	0.97	700
C4—C5		1.372 (4)	C18-	—H18B	0.97	/00
C4—H4A		0.9300	C19-	—H19A	0.96	500
С5—С6		1.389 (3)	C19-	—H19B	0.96	500
С5—Н5А		0.9300	C19-	—H19C	0.96	500
С6—С7		1.475 (3)	C20	—H20A	0.96	500
С8—С9		1.391 (3)	C20	—H20B	0.96	500
C8—C13		1.397 (3)	C20	—H20C	0.96	500
C9—C10		1.373 (3)	C21-	—H21A	0.96	500
С9—Н9А		0.9300	C21-	—H21B	0.96	500
C10—C11		1.402 (3)	C21-	—H21C	0.96	500
C14—O2—C15		116.5 (2)	O1–	C14O2	122	.2 (2)
C3—O3—C21		117.7 (2)	O1–	C14C11	125	.2 (3)
C7—N1—C8		106.39 (19)	O2–	-C14C11	112	.6 (2)
C7—N1—C17		125.4 (2)	O2–	-C15-C16	106	.8 (2)
C8—N1—C17		126.9 (2)	O2–	-C15-H15A	110	.4
C7—N2—C13		104.5 (2)	C16	—С15—Н15А	110	.4
C6—C1—C2		121.9 (2)	O2–	-C15-H15B	110	.4
C6—C1—H1A		119.0	C16	—С15—Н15В	110	.4
C2—C1—H1A		119.0	H15	А—С15—Н15В	108	.6
C3—C2—C1		119.3 (2)	C15-	—С16—Н16А	109	.5
С3—С2—Н2А		120.3	C15-	—С16—Н16В	109	.5
C1—C2—H2A		120.3	H16	A—C16—H16B	109	.5
O3—C3—C4		116.4 (2)	C15-	—С16—Н16С	109	.5
O3—C3—C2		124.0 (3)	H16	А—С16—Н16С	109	.5
C4—C3—C2		119.6 (3)	H16	В—С16—Н16С	109	.5
C5—C4—C3		120.5 (3)	N1-	C17C20	111.	.8 (2)
С5—С4—Н4А		119.7	N1-		111.	.4 (2)
С3—С4—Н4А		119.7	C20-		114	.3 (2)
C4—C5—C6		121.0 (3)	N1-	-C17-H17A	106	.2

supplementary materials

С4—С5—Н5А	119.5	C20—C17—H17A	106.2
С6—С5—Н5А	119.5	C18—C17—H17A	106.2
C1—C6—C5	117.6 (2)	C19—C18—C17	114.9 (2)
C1—C6—C7	120.1 (2)	C19—C18—H18A	108.5
C5—C6—C7	122.3 (2)	C17—C18—H18A	108.5
N2—C7—N1	113.3 (2)	C19—C18—H18B	108.5
N2—C7—C6	124.3 (2)	C17—C18—H18B	108.5
N1—C7—C6	122.4 (2)	H18A—C18—H18B	107.5
N1—C8—C9	133.5 (2)	С18—С19—Н19А	109.5
N1—C8—C13	105.1 (2)	C18—C19—H19B	109.5
C9—C8—C13	121.4 (2)	H19A—C19—H19B	109.5
С10—С9—С8	117.2 (2)	C18—C19—H19C	109.5
С10—С9—Н9А	121.4	H19A—C19—H19C	109.5
С8—С9—Н9А	121.4	H19B—C19—H19C	109.5
C9—C10—C11	122.4 (2)	C17—C20—H20A	109.5
C9—C10—H10A	118.8	С17—С20—Н20В	109.5
C11—C10—H10A	118.8	H20A—C20—H20B	109.5
C12—C11—C10	120.2 (2)	C17—C20—H20C	109.5
C12—C11—C14	121.5 (2)	H20A—C20—H20C	109.5
C10-C11-C14	118.3 (2)	H20B-C20-H20C	109.5
C11—C12—C13	118.2 (2)	O3—C21—H21A	109.5
C11—C12—H12A	120.9	O3—C21—H21B	109.5
C13—C12—H12A	120.9	H21A—C21—H21B	109.5
N2-C13-C12	128.7 (2)	O3—C21—H21C	109.5
N2—C13—C8	110.8 (2)	H21A—C21—H21C	109.5
C12—C13—C8	120.5 (2)	H21B—C21—H21C	109.5
C6—C1—C2—C3	-0.6 (4)	C13—C8—C9—C10	2.4 (4)
C21—O3—C3—C4	178.6 (2)	C8—C9—C10—C11	-0.8 (4)
C21—O3—C3—C2	-2.9 (4)	C9-C10-C11-C12	-0.8 (4)
C1—C2—C3—O3	-178.0 (2)	C9—C10—C11—C14	177.5 (2)
C1—C2—C3—C4	0.5 (4)	C10-C11-C12-C13	0.9 (3)
O3—C3—C4—C5	178.6 (3)	C14—C11—C12—C13	-177.3 (2)
C2—C3—C4—C5	0.0 (4)	C7—N2—C13—C12	-178.3 (2)
C3—C4—C5—C6	-0.4 (4)	C7—N2—C13—C8	0.8 (3)
C2—C1—C6—C5	0.2 (4)	C11—C12—C13—N2	179.7 (2)
C2—C1—C6—C7	178.8 (2)	C11-C12-C13-C8	0.6 (3)
C4—C5—C6—C1	0.3 (4)	N1-C8-C13-N2	-0.6 (3)
C4—C5—C6—C7	-178.3 (3)	C9—C8—C13—N2	178.5 (2)
C13—N2—C7—N1	-0.7 (3)	N1-C8-C13-C12	178.6 (2)
C13—N2—C7—C6	-179.7 (2)	C9—C8—C13—C12	-2.3 (4)
C8—N1—C7—N2	0.3 (3)	C15—O2—C14—O1	-1.6 (4)
C17—N1—C7—N2	168.1 (2)	C15—O2—C14—C11	178.4 (2)
C8—N1—C7—C6	179.4 (2)	C12-C11-C14-O1	-179.9 (2)
C17—N1—C7—C6	-12.9 (4)	C10-C11-C14-O1	1.9 (4)
C1—C6—C7—N2	-66.1 (3)	C12—C11—C14—O2	0.1 (3)
C5—C6—C7—N2	112.4 (3)	C10-C11-C14-O2	-178.1 (2)
C1—C6—C7—N1	114.9 (3)	C14—O2—C15—C16	170.8 (2)
C5—C6—C7—N1	-66.5 (3)	C7—N1—C17—C20	120.4 (3)
C7—N1—C8—C9	-178.8 (3)	C8—N1—C17—C20	-74.4 (3)

C17—N1—C8—C9	13.8 (4)		C7—N1—C17—C1	8	-110.3 (3)
C7—N1—C8—C13	0.2 (2)		C8—N1—C17—C1	8	54.9 (3)
C17—N1—C8—C13	-167.3 (2)		N1—C17—C18—C	219	53.6 (3)
N1—C8—C9—C10	-178.9 (2)		C20—C17—C18—	C19	-178.5 (3)
Hydrogen-bond geometry (Å, °)					
D—H…A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C21—H21C···O1 ⁱ		0.96	2.47	3.389 (4)	161.
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$	2.				

